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ABSTRACT

Wheelchairs play an important role for people living with locomotor impair-

ments. However, powered wheelchair users frequently report both minor and major

accidents. The goal of this thesis is to advocate for the use of robotic technology, in

particular sensor-based detection and automatic classification of activities, to track

and characterize activities onboard smart wheelchairs.

This thesis presents an end-to-end pipeline for accurately detecting and classify-

ing wheelchair activities from accelerometer data using signal processing and machine

learning methods. In the first step, a datalogging platform is installed on a com-

mercially available power wheelchair that records accelerations in 3 directions. After

that, fast fourier transform, together with some other processing steps, are applied

to produce a feature vector representing the activities. A classifier is then trained

on top of the feature vector to categorize different activity types. Besides, we also

explore the possibility of discovering hidden patterns of activities using unsupervised

topic modeling methods.

Our methods are validated by empirical results; Experiments were conducted in

a clinical setting, in which experienced wheelchair users were asked to conduct a set of

typical wheelchair activities. In a 25-class classification problem, we achieved around

50% accuracy in categorizing activity types. We also qualitatively and quantitatively

show that topic modeling provides good insights on characterizing wheelchair activ-

ities. Altogether, this work provides new tools and methods for characterizing the

usage of smart wheelchairs, or potentially other mobile robots.
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ABRÉGÉ

Les chaises roulantes jouent un rôle important pour les gens présentant des

difficultés de locomotion. Cependant, les utilisateurs de chaises roulantes électriques

rapportent des accidents autant mineurs que majeurs. Le but de cette thèse est de

promouvoir l’utilisation de technologies robotiques, plus précisemment la détection

à base de senseurs et la classification automatique d’activités dans le but de traquer

et caractériser les activitées à bord de chaises roulantes intelligentes.

Cette thèse présente une méthode pour détecter et classifier précisemment les

activités des chaises roulantes à partir de données d’accéléromètre en utilisant des

méthodes d’apprentissage automatique et de traitement de signaux. D’abord, une

plateforme de collecte de données enregistrant dans trois directions est installée sur

un fauteuil roulant électrique commerciale. Ensuite, une transformation rapide de

Fourier ainsi que quelques étapes de traitement sont appliquées pour produire un

vecteur de caractéristiques représentant des activitées. Un classificateur est ensuite

entraîné sur ces vecteurs afin de catégoriser différents types d’activités. Nous ex-

plorons aussi des moyens de découvrir des motifs cachés d’activités en utilisant des

méthodes d’apprentissage non-supervisé de "topic modelling".

Nos méthodes sont validées par des résultats expérimentaux; les expériences ont

été conduites dans un environnement clinique où des usagers de fauteuils roulants se

sont vu demander de conduire un ensemble d’activités typiques pour une personne

en fauteuil roulant. Dans un problème de classification avec 25 classes, nous avons

atteint environ 50% de précision dans la caractérisation de types d’activités. Nous
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montrons aussi de façon qualitative et quantitative comment le "topic modelling"

produit de bons indices dans la catégorisation d’activités de fauteuil roulant. Ce

travail montre de nouveaux outils et de nouvelles méthodes pour caractériser l’usage

de fauteuils intelligents ou, potentiellement, d’autres robots mobiles.
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Chapter 1
Introduction

Mobility plays an important role in social participation and quality of life. For

individuals who live with locomotor impairments, mobility can be facilitated by the

optimal use of assistive devices such as powered wheelchairs (PW) [10]. However, PW

users frequently report both minor accidents, such as colliding with people, furniture

and walls, and major accidents such as tips and falls, which can lead to serious

injuries [11]. In order to provide better assistance to this population, the design of

intelligent powered wheelchairs using robotics and intelligent system technologies,

has received significant attention from the robotics community in recent years [13].

During the last decade, significant research on intelligent wheelchairs has focused

on the design and control aspects, including but not limited to human-machine inter-

faces and autonomous navigation. However, due to the fact that wheelchair-related

accidents are not uncommon [19], we believe that monitoring is an equally important

aspect in the development of intelligent wheelchairs, or assistive robots in general.

In fact, monitoring plays a very important role in the users’ training process

of PW. Given limited number of training sessions between clinicians and patients

before a decision is made whether the patients are suitable for controlling the PW

on their own, it is important for the clinicians to receive as much useful information

as possible. In this regard, an automatic system to characterize driving activities
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would be helpful because it provides an objective and comprehensive summaries on

the patients’ driving experiences.

1.1 Problem Definition

With the goal of developing a full-fledged monitoring system that can charac-

terize wheelchair activities and evaluate safety performances during the use of intel-

ligent wheelchairs, this thesis presents an end-to-end pipeline, from capturing sensor

data to automatic activity recognition, together with empirical validations. More

specifically, in term of activity recognition, we have two branches, namely activity

classification and pattern discovery.

1.2 Methods

In activity classification, we assume each activities are well defined in the sense

that a clear activity type is associated with a known period of sensor input. The

objective is to figure out the properties of the sensor input associated with each

activity types, so an effective classifier can be built in order to categorize any unknown

activities. We applied Fast Fourier Transform to convert the time series signals

into frequency domain features. With some further manipulation, we built effective

classifiers using support vector machine and nearest neighbour.

In pattern discovery, we get rid of the assumption of well defined activities.

Therefore, instead of categorizing activities, we are trying to extract semantics out

of a whole stream of sensor input. We applied topic modeling, which is originally

used in text pattern recognition, on our sensor data. We tried to infer higher level

hidden topics and then further analyse the properties and constituents of the topics.

Topic modeling is powerful in the sense that no manual annotation is required.
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1.3 Experimental Results

For the purpose of the studies, a dataset of driving activities carried out by

seven participants were collected in a clinical settings. Each of the participants

have conducted a series of tasks, extracted from the Wheelchair Skills Test from the

Dalhousie University [32]. With a total of around 25 types of tasks, our classifier

achieved an accuracy of around 50%, compared to 4% with a random classifier.

We also successfully demonstrated a few potential uses of topic modeling with this

dataset, including examples of story telling and hazard discovery.

1.4 Contributions

Since autonomous navigation and interactive command systems used to be the

main focus on the research of intelligent wheelchairs, the number of works conducted

on activity recognitions, on the contrary, is very rare. As per our knowledge, this

is the first attempt to apply topic modeling in wheelchair activities. This is also

one of the first premiers attempting to train an activity classifier as well as to give

a thorough evaluation on the performance with participations from real users in

a clinical settings. The main contribution of our work is an end-to-end pipeline

which is not only straight forward and easy to implement, but also transferable and

extendable to other mobile robotic applications. Our contribution is validated during

experiments with real PW users.

There are mainly 3 contributors for this work. The experimental dataset is

collected by professor Philippe Archambault from the School of Physical & Occu-

pational Therapy Department from McGill University. I, myself, worked on the

methodologies and experiments with the provided datasets. My supervisor, Joelle
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Pineau, also from the Computer Science Department, provided advice, guidance and

collaboration on the project.

1.5 Thesis Organization

The organization of this thesis is as follows: In chapter 2, we summarize the

related works, mostly on the area of intelligent wheelchair and activity recognitions.

In chapter 3, we explain in details the machine learning and signal processing tech-

nologies required to understand our work. We then present the activity recognition

methodologies in chapter 4, followed by empirical studies in chapter 5. We conclude

our work and give some directions for future work in the last chapter.
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Chapter 2
Related Works

There are two areas of research, namely smart wheelchairs and activity recog-

nitions, that are closely related to this thesis. In the smart wheelchair section, we

give a brief roadmap of the development of smart wheelchairs since its early research

prototypes. After that, we also mention a few recent smart wheelchair research

projects/groups that are comparatively more related to our work. In the activity

recognition section, we give a brief summary on research conducted in recent years,

with a primary focus on using accelerometer data, which is what we used.

2.1 Smart Wheelchairs

Traditional Powered Wheelchairs (PW) are usually controlled by a joystick in-

terface. However, to a lot of elderly and people with body disabilities, this could be

a stressful and difficult task. In fact, surveys indicate that 85% of clinicians see some

number of patients each year who cannot use a powered wheelchair because of the

lack of motor skills, strength, or visual acuity [1]. As a result of these limitations,

intelligent (smart) wheelchair evolved as an improved version since the early 1980s.

Early versions of smart wheelchair research prototypes are more like a mobile

robot equipped with chairs, e.g. "Mister Ed" [52]. In "Mister Ed", users sit on an

ordinary chair, which stick on top of a mobile robot, and the users control the robot

via a hand-held joystick. The design focused on cooperative control between human

and robot. By that, there were switches allowing the riders to authorize the robot
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to perform autonomous tasks like steering around obstacles, traversing hallways,

turning at doors or following other moving objects.

Later, most research prototypes were developed by incorporating additional

components on commercially available powered wheelchairs, e.g. NavChair [4]. The

extra components incorporated in NavChair included a DOS-based computer, ul-

trasonic sensors and interface module interposed between the joystick and power

module of the wheelchair. In order to accommodate a broad range of potential users

with different disabilities, NavChair was designed to support a hierarchy of oper-

ating levels, each of which requires varying degrees of control from users. Simply

put, it determines how autonomous the users want it to be. One of the biggest con-

tributions of the NavChair project was their autonomous navigation module. Two

obstacle avoidance methods, namely minimum vector field historgram (MVFH) and

vector force field (VFF), were applied. The two methods were originally used in

autonomous mobile robots, but modified to meet the specific needs of wheelchairs,

for instance, to account for its’ rectangular shape.

SMARTCHAIR is another early research prototype developed by the research

group in GRASP laboratory [53]. Similar to NavChair, they also provided a shared-

control paradigm with different levels of automation. In term of hardware, they

included a omni-directional camera that allows users to view the surrounding on a

display, on which the users can also give command via a visual interface. They had

carried out experiments on the performance of their navigation systems, including

navigation to targets, hallway navigation and doorway navigation. The empirical

results mainly consisted of a comparison of navigation time and number of obstacle
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collisions between manual mode and autonomous mode. The main conclusion of

their results was that their system provide faster response time to dynamic changes

in the environments.

CALL [56], OMNI [55] and SCENARIO [54] were other early research projects

on smart wheelchair, also focusing on semi-autonomous to fully-autonomous navig-

ations. For further details on the early development of smart wheelchairs, we refer

readers to a comprehensive literature review on smart wheelchairs before 2005 by

Simpson [16]. Research on smart wheelchairs continue after that, focusing mainly on

autonomous navigation and alternative command systems, which are however not

the main focus of this thesis. So for the rest of this section, we will give a brief

introduction to three other wheelchair research projects after 2005 which are more

related to our work.

In 2008, T Carlson and Y Demiris designed an interactive smart wheelchair by

predicting user intentions [57]. Unlike the prototypes mentioned previously, in which

human-computer collaboration is accomplished based on providing different levels of

automation, they approached the problem by predicting intentions and responding

to those predictions with adaptable levels of assistance. The predictions were made

by recognizing environments and movement properties like directions.

In 2009, another smart wheelchair project team called CanWheel was formed

comprising of scientists, clinical researchers and trainees across Canada [58]. On

a high level, CanWheel comprised of five main project areas. 1) Evaluating the

Needs & Experiences of Older Adults using Power Wheelchairs. 2) The Natural His-

tory and Measurement of Power Mobility Outcomes. 3) Strategies and Platforms
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for Collaboratively-Controlled, Environmentally-Aware Wheelchair Innovation, 4)

Activity and Status Monitoring System and 5) Evaluation of Safety, Efficacy and

Impact of the Wheelchair. Unlike other project teams which focus more on the tech-

nology side, the CanWheel team pays more attention on user adaptability with the

goal of bringing the smart wheelchair out of the laboratory into public use.

The work presented in this thesis is part of the smart wheelchair research group

called the SmartWheeler [59]. The SmartWheeler project tries to tackle a range of

challenging issues in mobile robotics, focusing on tasks pertaining to human-robot

interaction and robust control like dialogue management. A wheelchair platform is

built on top of a commercially available powered wheelchair Sunrise Quickie Freestyle,

with the addition of a touch-sensitive graphical display, front and back laser-range

finders and an onboard computer. The wheelchair platform is intended to be a

test-bed for validating novel concepts and algorithms for automated decision making

onboard assistive robots.

2.2 Activity Recognition

Activity recognition has experienced increased attention over the years due to its

applications in numerous domains like medical diagnosis and video gaming. Pavan

et al. has done a good survey summarizing different types of activity recognition

methods [2]. For the purpose of introducing our works, we focus on activity re-

cognition research that are based on accelerometer data because it is used in our

methodologies.
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2.2.1 Human Activities

Partly due to the advance of wearable sensor devices like smart phones, more

research has been published on recognizing simple human activities using acceler-

ometer data [27] [28]. Previous works mainly involved classifying simple activities

like standing, walking and running, etc. by analysing the sensor data captured from

accelerometers. The primary objectives are often on the evaluation of classification

accuracies with different learning algorithms and features.

In contrast to simple activities as mentioned above, researchers are also inter-

ested in complex activities, which are usually defined as activities that by themselves

are mixture of numerous simple activities, for instances, ‘going to work’ or ‘having

lunch’. In general, recognizing high-level daily routines is a much harder problem,

and per our knowledge, there are still no effective approaches published that could

classify complex activities as good as the simple ones. In fact, the number of pub-

lications on complex activities recognition are relatively rare. In this thesis, we tried

to tackle both simple and complex activities on wheelchairs.

Among those publications that attempted to tackle complex activities, T^am

et al. proposed a novel approach in using topic modeling, which is originally used in

text pattern discovery, to infer high-level daily routines as a probabilistic combination

of activity patterns [29]. They modelled high-level daily routines as a combination

of hidden topics (equivalent to hidden topics in the context of text documents).

Their approach is powerful in the sense that user annotations is not required. In

their paper, they gave some interesting qualitative results alongside the quantitative
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measures. Some of the idea in the pattern discovery section in this thesis is similar

to their work.

2.2.2 Smart Wheelchair Activities

Moghaddam has done a comprehensive analysis on the classification of simple

wheelchairs’ activities using accelerometer data in her thesis [9]. She compared four

different forms of features, including i) simple time domain features like mean and

variance, ii) frequency domain features, computed from fast fourier transform, iii)

wavelet transformed features, and iv) time delayed embedded features. Empirical

results showed that frequency domain features and time delayed embedded features

work best among the four. Her preliminary work on comparing different feature

types provides a solid foundation for our choice of using fast fourier transform in this

thesis.

The experimental dataset in her work consisted of a list of 35 activity types

and 30 repeated trials of each type (i.e. 1050 activities in total). First of all, the

35 activity types were labelled as either ‘Safe’ or ‘Unsafe’ with prior knowledge, and

the objective is to build a classifier that can identify an unseen activity being either

‘Safe’ or ‘Unsafe’, i.e a binary classification problem. Using 80% (24 trials out of 30)

of data as training and the rest for testing, she achieved an error rate of less than

7% using frequency domain features.

In the activity classification section of this thesis, we are also working on a similar

problem. However, the dataset we used is different in three main areas: First, the

dataset used in our work is collected from real PW users in a clinical settings, whereas

the dataset in [9] was collected by a healthy operator in a laboratory settings. Second,
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the activities carried out in our dataset are more varied and complex. For example,

a complicated task ‘Go to local gym’ is included. Third, we only have 5 trials per

each activity type per each participant in our dataset, compared to 30 trials in [9].
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Chapter 3
Technical Background

In this chapter, we summarize the technical background required to understand

the methodologies presented later in this thesis. We give a brief introduction on

Machine Learning, together with four different Machine Learning tasks including

Classification, Clustering, Dimensionality Reduction and Topic Modeling. Lastly,

we discuss Faster Fourier Transform as a way to process accelerometer signals.

3.1 Machine Learning

As a branch of artificial intelligence, machine learning has shown successes in

many different applications in recent years, including but not limited to robotic. [34].

The core of machine learning deals with generalization of data: given a subset of

data instances within a larger pool, we would like to construct a summarization that

could apply to the data instances outside the given subset [35]. This generalization

is powerful in the sense that it allows us to gain insight on unseen data. In reality, it

allows us to predict future events (unseen data instances) based on past experiences

(given subsets). The ‘Learning’ aspect of Machine Learning comes from the idea that

the generalization is learnt from data, and the process of learning the generalization

is usually termed as ‘Training’.

Take Optical Character Recognition (OCR) as an example application [36]. The

objective of OCR is to recognize characters or words in scanned or photographed im-

ages. This could be accomplished in many ways, but the Machine Learning approach
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does the work by observing samples. We feed the machines with sample images in

which we know what characters they representing. With some learning algorithms

(which we illustrate further in the following sections), we train a model that can take

any unseen image as input and use the learner to predict the characters in the image.

To put it formally, define X to be the space of input variables and Y to be the

space of output variables. Let’s say X has k dimensions, in which we refer each

dimension as a feature. The output variable Y , on the other hand, is usually one

dimensional. Then xi ∈ X is an instantiation of input and it has a corresponding

output yi. We assume there is a true function which map inputs to outputs, i.e.

f(xi) = yi ∀i. However this true function is unknown. The objective of machine

learning is then to find an approximation function f̂(xi) = ŷi such that ŷi and

yi are as close as possible in certain measurement metric. For example, squared

error, i.e. (ŷi − yi)
2 is a commonly used metric if Y is continuous. We often call

this measurement metric loss function L(ŷi, yi) because it measures how deviate the

predicted output is from the true output. The machine learning task is to learn this

approximate function using a set of data in which both x and y are given.

3.2 Linear Regression

Let’s consider linear regression to illustrate the above idea. Regression analysis

is the statistical process to relate dependent variable and independent variables. In

this context, dependent variable is output Y and dependent variables are input X

(multiple variables because X is multi-dimensional) as mentioned before. In linear

regression model, we assume yi is a linear combination of the inputs xi, and our

objective is to find the set of parameters β ∈ Rk+1 such that ŷi = β0+β1x1+β2x2+
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...+ βkxk, i = 1, 2, ..., n. The parameters are evaluated using a loss function, in this

case, the sum of squared error i.e.
∑n

i (ŷi − yi)2. In the other words, the machine

learning task is to find the set of β such that the loss is minimized [37]. It turns out

that linear regression has a closed form solution. If we express the sum of squared

error in matrix notations: i.e.

n∑
i

(ŷi − yi)2 = (Xβ − Y )T · (Xβ − Y )

, where

Y =



y1

y2

...

yn


, X =



x1,1 x1,2 ... x1,k

x2,1 x2,2 ... x2,k

...

xn,1 xn,2 ... xn,k


, β =



β1

β2

...

βn


(3.1)

Define cost function J(β) = 1
2
(Xβ − Y )T · (Xβ − Y ), and we can find the β

which minimize this cost function by taking first derivative, i.e. ∂
∂β
J(β) = 0. With

some algebra, β = (XTX)−1XTY .
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3.3 Features Extraction

One big challenge of applying machine learning technologies on a particular

problem is to gather useful features [38]. Features can be considered as certain

representations of data, and they can be of any form imaginable. Take OCR as

example, a feature could be intrinsic characteristic like the shape of characters, (e.g.

’A’ contains sharp angle on top). On the other hand, a feature could also be extrinsic

like the amount of space surrounding the character, (e.g. a large empty spaces on

the left, which might indicates the beginning of a sentence). Often, figuring out good

features requires prior knowledge on the application domains. For example in this

case, the fact that we know a sentence is usually started with a capital letter inspires

us to consider the amount of space as a feature.

Assuming we have a good set of features, then the next step is usually more

straight forward, or more like trial-and-error. There are a variety of machine learning

algorithms that we can plug in easily. However, in practice, we often need to go

back and forth many times to refine the features. Although applying a well studied

learning algorithm is straight forward, having good understanding on the mechanics

and principles of the algorithms allows us to make more effective diagnosis.
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3.4 Supervised Learning vs Unsupervised Learning

There are mainly two broad classes of machine learning algorithms, namely

supervised learning and unsupervised learning. The major difference between the

two is whether the data is labelled, meaning that the data is associated with a

desired output value. One typical example of supervised learning is classification.

Classification is the problem of identifying categories of an observation. Usually, in

this problem settings, we are given a set of observations (training data), which we

know their correct categories (labels). We train a model which can then be used

to identify the categories of other unseen observations. In fact, classification is very

similar to the regression problem mentioned in section 3.2 except for that fact that

the output is categorical instead of continuous.

Unsupervised learning, on the other hand, does not require observations being

labelled. One typical example of unsupervised learning is clustering. Clustering

is the problem of grouping observations. We don’t know the correct groups where

they belong and most of the time, we don’t even know how many groups there are.

Usually, what we do is to measure the similarities between observations and put

them into clusters (groups) accordingly. We extend the discussion of Classification

and Clustering in the following sections because these two methods are used in our

work.
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3.5 Supervised Learning: Classification

As mentioned, classification is the task of identifying categories of observations.

In this section, we will look into two classification algorithms, namely Support Vector

Machine (SVM) and Nearest Neighbours, which are based on two very different ideas.

Classifiers are built and compared using both methods in Chapter 4.

3.5.1 Support Vector Machine

For simplicity, let’s first consider cases where we only have two output categories

(binary classification). The basic idea of an SVM is to draw a decision boundary

to separate the two classes. Figure 3–1 illustrates the idea of drawing a decision

boundary. Suppose your observations are two dimensional, each data point is labelled

as either positive or negative, and the objective is to find a line that can separate

the positives from the negatives. Obviously, line L1 is not a valid choice because it

does not fulfill the requirement. To pick between L2 and L3, we need to introduce

another concept called margin, which is defined as the smallest distance from any

observations to the line. Intuitively, the larger the margin is, the more likely that

a new observation (which we don’t know the true category yet) will fall into the

correct side. Therefore, we would like to find a line that is not only able to separate

the positives and negatives perfectly, but at the same time maximizes the margin.

In view of this, L3 would be a better separator than L2 because the margin M3 is

larger than the margin M2. Once we have the decision boundary, the classifying step

is pretty straight forward: if the new observation falls into the positive side of the

boundary, then it is classified as positive, otherwise, it is negative.
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Figure 3–1: SVM - Decision Boundary

Let us look at figure 3–2 for a formal definition of margin. Define w as the normal

vector to the decision boundary, thus w
‖w‖ is the unit normal. w0 is the constant, thus

y = wx + w0 is the line representing the decision boundary. A is the data point in

consideration, and B is the corresponding point on the decision boundary that is

nearest to A. γ represent the length of the distance between the data point to the

decision boundary, and so the vector from B to A would be γ w
‖w‖ . If we represent A

as a vector x, then B would be x − γ w
‖w‖ . Since B is on the decision boundary, so

w · (x− γ w
‖w‖)+w0 = 0. By rearranging the equation, we solve γ as γ = w

‖w‖ ·x+
w0

‖w‖
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if data point is on the positive side of the decision boundary (direction of the line

normal).

Now, we have N data points and we define γi as the distance between the i-th

data point to the decision boundary. The margin of the decision boundary is then

min
i
γi. The objective of SVM is to find the decision boundary which gives the largest

margin, i.e.

max
w,w0

min
i
γi

= max
w,w0

min
i
yi · (

w

‖w‖
· x+ w0

‖w‖
)

where yi = 1 if the category of the data point is positive, and yi = −1 otherwise.

Solving for w and w0 in the above formation turns out to be a constraint op-

timization problem. From the definition of margin, we have

M ≤ yi · (
w

‖w‖
· x+ w0

‖w‖
) ∀i

which suggests that we are maximizing M with respect to w and w0 subject to

yi · ( w
‖w‖ · x+

w0

‖w‖) ∀i. For further details on solving this optimization problem, we

refer the reader to the reference [20].

In many cases, observations are not linearly separable, as shown in figure 3–3. To

deal with this problem, we map the observations into a higher dimensional feature

space, in which the observations are linearly separable with a higher dimensional
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Figure 3–2: SVM - Margin

hyperplane. To illustrate the idea, consider an example of 1 dimension observation in

figure 3–4. On the left hand side, you cannot draw any single straight line to separate

the positive and negative points (You can draw a parabola though). However, we

can map them into a 2 dimensional feature space, by introducing a second dimension

x2 = (x1−C)2. In the new feature space, the observations are then linearly separable.

This idea can be extended to higher dimensional observations.

Normally, the computation of high dimensional features could be expensive. For

example, if the observation space is an n-dimensional vector, i.e. < x1, x2, ..., xn >,

and to construct a feature vectors which consists of all second degree polynomial
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terms, i.e. < x1
2, x2

2, ..., xn
2, x1x2, x1x3, ..., xn−1xn >, the asymptotic performance

would be O(N2). Similarly, to construct a feature space of K-degree polynomial

terms requires a computational cost of O(NK), which is not practically feasible most

of the time. The beauty of SVM is that we are able to separate the observations in

that high-dimensional (or even infinite dimensional) feature spaces without actually

computing the features nor constructing the decision boundary, by making use of a

mathematical trick called the kernel trick [20].

As you can see, a single decision boundary can only be drawn if there are only

two classes. One common approach to handle multi-class classification problem is

to reduce it into multiple binary classification problems. For example, we can build

binary classifiers (called sub-classifiers) between each pair of classes. i.e. N(N−1)
2

classifiers for N classes. To classify a new observation, we first run it against all the

sub-classifiers, and per each sub classifications, whichever class win get one vote. At

the end, we take the class with the largest number of votes as the final output.

3.5.2 Nearest Neighbour

The Nearest Neighbour (NN) classifier makes use of a different idea from SVM.

In NN, we need to define a distance metric between two data points, i.e. D(xi, xj)

Some examples of distance metric are Manhattan distance, i.e.
∑
k

|xi,k − xi,k| [41]

or Euclidean distance, i.e.
√∑

k

(xi,k − xi,k)2 [40] where xi,k is the k-th dimension of

the data point i. With the distance metric defined, we can rearrange our training

data in increasing order of their distances to the new data point x that we want to

classify, i.e. x(1), x(2), ..., x(N) such that D(x(1), x) ≤ D(x(2), x) ≤ ... ≤ D(x(N), x).

The nearest neighbour classifier is built upon this new ordering [39].
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Figure 3–3: SVM - Non-linearly Separable

In the simplest version called the 1-nearest neighbour classifier, we simply assign

the new data point the class of its closest training data point, i.e. y(1) Figure 3–5

illustrate the idea considering euclidean distance as distance metric. The grey point

is the new observation that we want to identify, and points 1 to 3 are our training

observations. We compute the euclidean distances D1, D2 and D3 from the new

observation to each of the training observations, and pick the one with smallest

distance, which is point 2. So we simply output the class of observation 2 as the

predicted class of the new observation.
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Figure 3–4: SVM - Mapping to Higher Dimension

Figure 3–5: Nearest Neighbour Illustration
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There are many types of variations of nearest neighbour classification, one of

which is called the k-nearest neighbours. In k-nearest neighbours, instead of taking

a single nearest neighbour y(1), we take K neighbours and then make a majority vote

on the classes, i.e. the mode of set (y(1), y(2), ..., y(K)).

3.5.3 Support Vector Machine vs Nearest Neighbour

There are some fundamental differences between the two classifiers. First, SVM

can deal with very high dimensional, or even infinite dimensional data using kernel

[20] whereas the computational cost of NN scales up proportionally with the dimen-

sions. Second, NN is very intuitive and easy to implement while the mathematics

behind SVM could be very involved. Third, SVM require a good choice of kernel

while NN require a good choice of distance metric between data points. Finally,

NN can handle multi-class classification naturally, whereas SVM can only handle it

indirectly on top of the binary version.
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3.6 Unsupervised Learning: Clustering

Clustering is the task of putting objects into groups (i.e. clusters), in which

the objects within the same groups are more similar under some similarity measure.

One popular notion of clusters is small distances within cluster members and large

distances between different clusters. Clustering has been used widely in data mining

and pattern recognition. Unlike classification problems, the observations usually do

not have predefined classes and there are no absolute correct answers to the problems.

K-means Clustering is one instance of clustering algorithms with the aim to

partition all the observations into K disjoint sets, so as to minimize the within-

cluster sum of squares [42]. To put it mathematically, given a set of N observations,

each of which is a vector of any dimension, the objective is to find the partitions

S = {S1, S2, ..., Sk} such that

argmin
S

k∑
i=1

∑
xj∈Si

‖xj − µi‖2, where

µi =
1

N

∑
xj∈Si

xj

Solving this problem deterministically turns out to be NP-hard [43], however,

in practice, there are efficient iterative algorithms that converge to local optimum

which can achieve good solutions quickly [44].

25



3.7 Dimensionality Reduction: Principal Component Analysis

Dimensionality reduction is the technique of reducing the number of input fea-

tures. Sometimes observations posse very high dimension, meaning that they have a

lot of features, and a lot of time, dealing with high dimensional data is not good for

the following reasons: First, it requires high computational costs and storage spaces.

Second, some features are highly correlated, and they might all be influenced by a

single underlying factor. Dimensionality reduction allows us to remove redundant

features and recover underlying factors, which usually give better results because of

the reduced noise.

Principal Component Analysis (PCA) [45] is a common dimensionality reduc-

tion algorithm in the machine learning community. The idea is to convert a set of

correlated variables (the original features of the observations) into a set of linearly

independent variables called principal components by doing a linear transformation.

Other than being linearly independent to each other, the first principal component

has to posses the highest possible variance, and after fixing the first component, the

second principal component has be picked such that it has the highest possible vari-

ance, so and so. Figure 3–6 illustrates the idea of principal components. Consider

the original observations having two dimensions, x1 and x2. We do a linear transform

on the observations and represents them in terms of another two bases x′1 and x′2.

Note that x′1 gives us the highest possible variance among all the possible basis. x′2

is linearly independent to x′1 and obviously also posses the highest possible variance.

Here, we define x′1 and x′2 as the principal components.
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Figure 3–6: PCA - Principal Components

Algebraically, PCA can be solved by eigenvector decomposition [46]. First, we

construct a matrixX in which each row corresponds to a data point, and each column

corresponds to a particular features, i.e. Xi,j indicates the j-th feature of the i-th

data point. The goal of PCA is to find an orthonormal matrix P where Y = PX such

that the covariance matrix 1
n−1Y Y

T is diagonalized. The covariance matrix being

diagonalized means that the components are linearly independent. By definition, P

is our desired linear transformation matrix, and the rows of P are then our principal

components.
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It turns out that the rows of P are simply the eigenvectors of XXT (detailed

proof in reference [46]). Therefore, we can obtain the eigenvectors (principal compon-

ents) by doing a singular value decomposition on XXT , and sorting the components

according to their respective eigenvalues (which are also the variances of X along the

rows of P ).

Continuing with our example, once we extract the principal components of the

observations, we can do dimension reduction easily by simply dropping the least

significant component(s), for example in this case, the x′2 component. It means that

the observations can now be represented as a single dimension in term of x′1 , as shown

in Figure 3–7. Intuitively, even though we only have one dimension left, it can still

represent quite well the original observations. In fact, it is the best 1-dimensional

representation we can have in term of capturing variances. Let’s say instead of using

the principal components, you simply drop the x2 in the original observations. The

x1 component will give us less information than x′1.

Usually the number of principal components to be dropped is decided by analys-

ing the variances accounted for. Suppose the observations are in D dimension, and

denote the variances of the observations in the i-th (i ∈ D) principal component be

Vi. The total variances would be
D∑
i=1

Vi, and the percentage of variances accounted

for by the first k (k ≤ D) components would be

k∑
i=1

Vi

D∑
i=1

Vi

. One common practice is to

retain the first k principal components such that the percentage of variances accoun-

ted for reaches a certain threshold [45], like 90%. However, there is no absolute rule.

Dimensionality reduction plays an crucial role in our work; we reduced our frequency
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Figure 3–7: PCA - Dimension Reduction

domain features from 150 dimensions to around 10 dimensions, while retaining about

90% of variances. Without this, our experiments will take a lot more time to finish.
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3.8 Topic Models

Topic Modeling is a type of statistical model learning for discovering hidden

topic patterns from a set of observations. It was originally used in text pattern

discovery, but later extended to other application domains [47]. Intuitively, given a

text document, the observations are a sequence of words. We could imagine that

the words are not chosen randomly, but more likely being chosen according to some

underlying topics. For example, if the document is about "science", then we’re more

likely to see words like "experiments" and "discovery". The important concept here

is that the topics are usually unobservable (hidden), and that’s why we have to infer

them from what we observe.

3.8.1 Bags-Of-Words Model

In reality, grammars and word orders play an important role in the context of the

documents. However, for simplicity, a methodology called Bags-Of-Words is usually

applied [47]. In Bags-of-Words model, we completely ignore the ordering of words

and represent the document solely as frequencies of words from a dictionary. For

example, a simple text document "Science is interesting. Everybody loves Science."

is represented as {"Everybody": 1, "interesting": 1, "is": 1, "loves": 1, "Science":

2}. Note that the ordering in the dictionary is irrelevant.

3.8.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a more sophisticated instance of topic

models [21]. The basic idea of LDA is that each document is represented as a mixture

of latent topics, where each topic, on the other hand, is represented as a distribution

over words. Figure 3–8 shows the plate notation (Plate notation is a method of
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representing variables that repeat in a graphical model) of LDA model. The outer

box represents the duplicates of M documents, while the inner box represent the

duplicates of N words in a document (Note that we assume all the documents have

N words in the diagram for simplicity, but that is not a requirement). w is the only

observable variable, and wi,j as the j-th word appeared in the i-th document. zi,j is

the topic corresponding to wi,j, i.e. j-th topic appeared in the i-th document.

Figure 3–8: Graphical Model representation of LDA [21]

Assuming there is a total of K topics and V words in the vocabularies, LDA

assumes the following generative process for the documents

1. For each document i,

(a) Choose θi ∼ Dir(α)

where θi ∈ RK and Dir(α) is the Dirichlet distribution for parameters α

(b) For each word,
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i. Choose a topic zi,j ∼Multinomial(θi)

where Multinomial(θi) is a multinomial distribution over parameter θi

ii. Choose a word wi,j probabilistically according to P (wi,j|zi,j, β)

where P (wi,j |zi,j , β) is a multinomial probability conditioned on topic zi,j over

parameter β

and β ∈ RKxV , in which βi,j indicates the probability of picking word i given that

the topic is j

There are a couple of important properties of LDA. First, in LDA, each doc-

ument is composed of multiple hidden topics, whereas in some other models, each

document contains only a single topic. Second, LDA has a generative nature: each

words of the document (observable variables) are modelled as if they are generated

from an underlying topic (latent variables) in a probabilistic manner. In contrast,

discriminative models do not care about how the observations are generated, but

focus on the conditional probability of the latent topic given the observations, i.e.

P (topics|words). Third, LDA assume Dirichlet priors on the topic distribution of a

documents.

The two parameters that we need to estimate in LDA is α and β. Basically, in

the training phase, we wish to find α ∈ RK and β ∈ RK×V such that the likelihood

of the our observations (i.e. w1, w2, ..., wM) is maximized, i.e.

argmax
α,β

M∑
d=1

log p(wd|α, β), (3.2)

and this can be solved using a variational EM algorithm [21], or Gibbs Sampling

[22].
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As a by-product of the training, we will obtain the topic distribution of docu-

ments, i.e. θ1, θ2, ..., θM . This topic distribution is the most important outcome for

the purpose of our analyses in this thesis. In fact, we can also make inference on

any unseen documents using α and β by computing the posterior distribution of the

hidden variables, i.e.

p(θ, z|w, α, β) = p(θ, z, w|α, β)
p(w|α, β)

. (3.3)
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3.9 Training, Testing and Validation

3.9.1 Testing Set

When we want to report how well the machine learning algorithms or models

work on a particular dataset, one common approach is to split the dataset into

two disjoint subsets, called training set and testing set. We construct and train our

models and algorithms only with the training set, and after that we report the results

on the testing set. The reason for leaving an untouched testing set is because you

want to measure how your learned model is expected to generalize to unseen data.

3.9.2 Overfitting

Overfitting refers to the scenario that you are tuning the models too much in

order to make it work well for the training data, with the consequence that it does not

generalize to unseen data. Figure 3–9 illustrates the idea of overfitting. Suppose we

are given a set of observations with a single independent variable x and a dependent

variable y (i.e. a Regression problem). The objective is to make a good hypothesis

on the relationship between x and y in order to make good prediction on y given a

new observation x in the future. One way to do it is to fit a line to minimize the error

in the training data. The three graphs from figure 3–9 from left to right show i) a

straight line, ii) a quadratic curve, and iii) a 5-degree polynomial curve respectively.

The training error improve from left to right, and in fact the curve fit perfectly (zero

error) with the 5-degree polynomial curve. However, the problem is that the 5-degree

polynomial curve, although working perfectly with the training data, is unlikely to

make a good prediction on a new observation. In fact, the polynomial curve is
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highly likely to work better and so if our hypothesis goes beyond certain degree (too

complicated), we suffer from overfitting.

Figure 3–9: Overfitting Illustration

Left: Data fitted with linear function; Middle: Data fitted with quadratic function; Right: Data
fitted with 5-degree polynomial function.

3.9.3 Validation Set

To fix the problem of overfitting, sometimes we leave out an additional portion

of the training data as validation set, which is used to find the correct hypothesis

as well as controlling the models’ complexity. This left-out portion of data is called

Validation Set. Continuing with the above example, imagine now you have one extra

observation and you want to validate your hypothesis with this new observation. You

will realize that your 5-degree polynomial curve does a very bad job. Indeed, you can

find the best hypothesis that gives the most accurate prediction on this validation

data point. Intuitively, if the hypothesis works well on the left-out validation data,

it is more likely that it will also work well on the testing set because they are both

unseen.

Note the difference between testing set and validation set: the testing set is

never touched during the training process, and it is used purely for reporting results

at the end, whereas the validation set is used during training for the purpose of
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getting a good model that generalizes well for unseen data. The splitting of dataset

can be summarized in figure 3–10.

Figure 3–10: Dataset Composition

3.9.4 Cross Validation

One problem with the setting in figure 3–10 is that we didn’t fully utilize the

amount of data we have. Let’s say if we set aside 20% of the data in the validation

set, we are losing 20% amount of data for fitting the models’ parameters. Therefore,

a methodology called Cross Validation is usually applied [48]. In a K-fold cross

validation, we split the training data into K disjoint subsets. We train our model for

K times, each time using one of the subset as validation data and all other subsets

as training. After that, we take the average of the K runs. Figure 3–11 illustrates

the idea of a 5-fold cross validations: We split the whole training data into 5 subsets,

and in each round, we leave out one subset as validation. Due to the limited amount

of data in our work, cross validations have been used a lot to tune the parameters of

our model.
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Figure 3–11: Cross Validation Illustration

3.10 Signal Processing

Signal Processing is the area of Electrical Engineering that deals with the ana-

lysis of analog and digitized signals [60]. Some common signals include sounds,

electromagnetic radiations and sensor readings. The particular signals of interest for

the purpose of this thesis, is accelerometer sensor readings.

Signals usually appear as a sequence of quantitative measurements over time,

therefore one mathematical way to represent signal is to consider it as a function

across time, i.e. s(t). Sometimes, this time-domain function doesn’t reveal much

useful information, or at least it’s hard to interpret. For one thing, the readings in

consecutive time steps posse temporal dependency, and because of this correlation, we

cannot treat each data point independently and apply machine learning algorithms
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directly. Often, we transform the raw signals into higher level features, and Fourier

Analysis is one of commonly used method.

3.10.1 Fourier Analysis

Fourier analysis of a time series is a process of decomposing a periodic func-

tion into a set of sinusoidal components, i.e. s(t) =
N∑
n=1

an sin(2πnfot + φn) [49].

Each sinusoidal components have different period, i.e. 2πnfot, phase shift φn, and

amplitude an.

Sometimes, we refer to this set of sinusoidal components as fourier series. In-

tuitively, the way to look at the fourier transform is that we are converting the

original signal from time domain to frequency domain because each sin curve simply

represents a particular frequency. The coefficients a1, a2, ..., an, on the other hand,

correspond to the magnitude of those frequencies.

3.10.2 Discrete Fourier Transform and Fast Fourier Transform

Discrete Fourier Transform (DFT) is a mathematical technique used to convert a

series of equally spaced samples into a list of coefficients of sinusoids [23]. Obviously,

the time series sensor data fall into the category of equally spaced samples, and

therefore we can use DFT to compute the frequency coefficients from the raw signals.

Naive approach to compute DFT takes an asymptotic performance of O(N2). Faster

Fourier Transform (FFT) refer to the algorithms (there are more than one) that

compute DFT efficiently, usually with an asymptotic performance of O(N logN)

[24]. We will not go into the details of the actual implementation of FFT, so for

the rest of the thesis, we will simply refer to the computed frequency coefficients as
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‘FFT coefficients’. In fact, the FFT coefficients are the main extracted features we

used in our studies.
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Chapter 4
Methodology for characterizing smart wheelchairs’ activities

The main contribution of this thesis is an end-to-end pipeline for wheelchairs

activities recognition. To define activities recognition more specifically, we have two

main goals: First, we would like to train a classifier from previously seen and labelled

activities which can then be used to categorize future instances of these activities.

Second we would like to explore the possibility of using topic modeling to infer

hidden activity patterns in a totally unsupervised manner. Figure 4–1 shows our

multi-layered model. We shall explain each components in this chapter.

4.1 Data Logging

For the purposes of this study, a data-logging platform, called the Wireless

Inertial Measurement Unit with GPS (WIMU-GPS) (Figure 4–2), was developed

and installed on the powered wheelchair of the users. We record 3D accelerometer

data, which captures the acceleration magnitude in x, y and z directions at a rate

of 250 Hz. Figure 4–3 shows a sample accelerometer signals in 3 directions captured

from our sensor device.

4.2 Data Collection

In a clinical setting, under the monitoring of therapists, 7 real powered wheel-

chair users (which we will refer to as participants for the rest of the text) were asked

to perform a list of driving tasks, extracted from the Wheelchair Skills Test (WST)

[32], using their own powered wheelchairs. The WST provides a training and testing
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Figure 4–1: End-to-End pipeline overview

protocol developed to help clinicians assess and train wheelchair users. As such,

it represents a rich and diverse set of wheelchair driving activities characteristic of

everyday use.

Table 4–1 summarizes the types of tasks, together with the number of trials,

carried out by each participant. There are a total of 743 trials with 29 different

types, and the average duration of a single trial is around 18 seconds.

Two different sets of experiments are presented. In the first set of experiments,

we treat each participant individually, and build a personalized event classifier. In

this case, for each participant, we use the first trial of each type of tasks as testing
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Figure 4–2: Overview of datalogging platform (from [25])

Figure 4–3: Sample 3D accerlerometer signals
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data, and use the remainder as training data. This case is denoted ‘Individual-Set’ in

results below. Overall classification performance are calculated by taking an average

over the accuracy of the personalized classifiers. In the second set of experiments,

we build a single classifier over all subjects and evaluate its ability to generalize to

new subjects. As such, we use the first participant’s performance as testing data,

and use the performance of the other 6 as training data. Since there were no trials

conducted by participant 1 on tasks T10, T26 and T27, we will drop all the trials

of these three tasks from other participants as well. We use the term ‘Group-Set’ to

refer to this classifier in the rest of the thesis.

There are two major differences between the two sets of experiments. First, we

obviously have more samples in ‘Group-Set’. Second, samples from the ‘Group-Set’

will have higher variances because they are coming from different participants. We

can imagine that over multiple trials of the same task, the variations coming from

different people would be greater than the variations coming from the same person.

It is also worth emphasizing that in ‘Group-Set’, we are trying to test on an unseen

participant.

4.3 Feature Extraction and Dimension Reduction

To convert the recorded time-series data into a discrete set of feature vectors,

we split the data stream into regular intervals, called windows, and extract rep-

resentative properties from each window. A sliding window (i.e. having overlap

between windows) of size ranging from one to a few seconds has been shown to pro-

duce good results in activity recognition [26, 27, 28, 29]. Previous work [26] also

considered a detailed comparison of the classification performance on wheelchair
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activities using four different properties of time series, namely time-domain features,

frequency-domain features, wavelet transform features and time-delay embedded fea-

tures. Among these, frequency-domain features had the strongest predictive perform-

ance. Therefore in this work, we consider only frequency-domain features, using a

window size of 2 seconds, with 0.2 seconds sliding overlap.

For each window, we apply a Fast Fourier Transform on each acceleration direc-

tion and extract the amplitudes of frequencies ranging from 1 to 50 (we drop frequen-

cies greater than 50 because the signal strength of those are comparatively weak). Al-

together in 3 directions, we obtain 150 features, i.e. {F x
1 , F

x
2 , ..., F

x
50, F

y
1 , F

y
2 , ..., F

y
50, F

z
1 , F

z
2 , ..., F

z
50}.

We then apply Principal Component Analysis to reduce the number of features to a

small dimension, d, i.e. {F1, F2, ..., Fd}.

As a minor point, for the purposes of testing our approach for event classification,

we eventually divide the recorded data into separate training and testing sets. The

best PCA transform is selected using only the training data. We can then apply the

same transformation matrix on the testing data.

4.4 Clustering

At this stage, the output of the feature extraction and dimension reduction

could be used directly for output classification, as is common in the machine learning

literature. However a significant limitation of this approach is that the classification

step (especially the training phase) can be computationally expensive because of

the large amount of windows. To overcome this, we further reduce the data using

clustering methods to find representative samples of the training data.
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We apply K-means clustering on all the windows. As a result of this procedure,

each window is assigned a cluster ID. The cluster IDs can then be used directly

as input features in Topic Modelling (unsupervised branch of the pipeline in Fig

4–1). Alternatively, for the purposes of event classification (supervised branch of

the pipeline), we can also compute a cluster composition for each task. Define Ni

as the number of windows for task i, and wi,j as the j − th window of task i and

ci,j ∈ {1, 2, ...K} as the assigned cluster of wi,j after clustering. Cluster composition

of task i, i.e. CCi, is then defined as a vector, in which each element corresponds to

the percentage of which a particular cluster appeared in task i:

CCi =< CC1
i , CC

2
i , ..., CC

K
i >, where CCk

i =
Ni∑
j=1

I{ci,j = k}/Ni, and

I{eq} =

 1 if eq is true

0 if eq is false

The cluster composition vector can be used directly as an input to the event

classification module. In this case, each sample corresponds to a task, in contrast to

the unsupervised case where each sample corresponds to a window with an associated

cluster ID.

Similar to PCA, the K-means clustering selects the K centroids using only the

training data. Cluster membership of the datapoints in the testing data is assessed

using the clusters selected with the training data.

4.5 Parameter Fitting

There are a few parameters to select for the proposed method, in particular

the dimensionality of the PCA projection (d) and the number of clusters (K) for
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K-means clustering. For the PCA projection, preliminary results show that the 10

most significant components are sufficient to account for over 98% of the variance.

A common way to determine the number of clusters is by analyzing the intra-

cluster variances and inter-cluster variances [30]. However, in our case, optimizing

cluster quality does not necessarily align with the goal of optimizing classification

performance. Instead, we performed a grid search over cluster sizes from 10 to 100,

at an interval of 10 using cross-validations within the training set to select the best

number of clusters. In general, we found that the performance usually levels off at

around 30 to 50 clusters. More clusters sometimes lead to slightly better results, but

not significantly. We set the final number to K = 40.

4.6 Event Classification

The purpose of the event classification module is to take the cluster composition

vector and using supervised learning methods to produce an output corresponding

to an activity label.

We considered a variety of methods, including Support Vector Machine and

Nearest Neighbour classifiers. Preliminary investigation found that Nearest Neigh-

bour worked faster and achieved better (or equally good) performance. This is con-

sistent with related work on activity recognition from time series data [31]. So all

the results reported below use this approach. In short, given a training set D, denote

yz as the label of training sample z ∈ RN , the predicted label ŷ on testing sample

x ∈ RN would be:
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ŷ(x) = yz∗ where z∗ = argmin
z∈D

‖x− z‖2, (4.1)

where ‖x− z‖2 is the euclidean distance between cluster composition vectors.

4.7 Topic Modeling

Given enough labelled training samples, event classification can effectively re-

cognize activities with reasonable accuracies. However, in real life conditions, this

poses significant limitations in terms of (1) dealing with scarcity of labeled data,

(2) handling activities that change over time, and (3) discovering new activities. As

such we propose to use methods from topic modeling to characterize activities on

the smart wheelchair using only unlabeled sensor data.

The basic hypothesis of this approach is that activity patterns should possess a

hierarchical structure, as illustrated in Figure 4–4. The lowest level contains the raw

input signal, in our case 3D accelerometer data. On top of this are some primitive

action patterns that generate the underlying signals. Primitive actions, as we define

them, would be short lasting, roughly 2-3 seconds. These are exactly what we try to

capture with the clustering step. Ideally, each cluster would correspond to one type

of primitive action. Moving up the hierarchy, these lower level primitive actions are

assumed to be generated during the course of some higher level activity patterns,

which are unlabeled. The goal of this section is to propose the use of topic modeling

methods to infer the high level activity patterns from unabelled data.

To learn the latent semantic, we use the probabilistic topic model, Latent Dirich-

let Allocation (LDA). To apply LDA to learn the hidden structure, we first have to
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Figure 4–4: Activity pattern hierarchy

define what is a document and what a document constitutes in the context of smart

wheelchair activities. Our approach is to pull together a fixed number of consecutive

windows and consider them as a single document. If we define the document length

as L, then the number of documents we get from task i would be bNi/Lc. By then

putting all the documents from all tasks together, we have a total of M documents,

where

M =
∑
i

bNi/Lc.

Extending our previous notation, if we define w′i,j as the j− th window of document

i, and c′i,j as the assigned cluster of window w′i,j, the word vector of document i is

defined as

di =< c′i,1, c
′
i,2, ..., c

′
i,L > .

Now that we have the representation of documents, another parameter we need

to fix in LDA is the number of topics T in our model. One commonly used metric to

evaluate LDA is perplexity [21]. The idea is to set aside some testing data, and infer
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their likelihood using the trained model. We did cross validation on the training data

and found that perplexities stabilized at around 15 topics in most of our experimental

settings, and so used 15 topics for the rest of the experiments. In general, there may

not be a ‘correct’ number of topics; different numbers of topics can potentially model

different complexities of activity patterns.

One output of LDA that we are interested in is the probability distribution of

the T topics for each of the M documents denoted by θ ∈ RMxT , where θi,j is the

probability that a given word in document i is generated from topic j.
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Table 4–1: Dataset Summary

Task
Code Description

Average
Duration
(secs)

P1 P2 P3 P4 P5 P6 P7 Total

T1 Rolls forward 10m 16.99 5 5 5 5 5 5 5 35
T2 Rolls backward 5m 22.39 5 5 5 5 5 5 5 35
T3 Descends 5deg incline 17.71 5 5 5 5 5 5 5 35
T4 Descends 5deg incline 18.46 5 5 5 5 5 5 5 35
T5 Ascends 5cm level change 10.80 5 0 6 5 8 4 5 33
T6 Gets over 15cm pot-hole 9.88 2 0 5 3 0 3 3 16
T7 Descends 5cm level change 7.55 4 0 5 4 5 4 6 28
T8 Gets through hinged door in push direction 49.78 2 1 1 2 1 1 1 9
T9 Gets through hinged door in pull direction 27.17 2 1 1 2 1 1 1 9
T10 Gets over 2cm threshold 12.25 0 4 5 6 0 5 0 20
T11 Rolls 2m on soft surface 12.27 3 2 3 3 0 2 2 15
T12 Turns 90deg left while moving forward 13.77 5 5 5 5 5 5 5 35
T13 Turns 90deg left while moving backward 22.10 5 5 5 5 5 5 5 35
T14 Turns 90deg right while moving forward 12.67 5 5 5 5 3 5 5 33
T15 Turns 90deg right while moving backward 17.24 5 5 5 5 3 5 5 33
T16 Turns 180deg in place clockwise 8.39 4 5 3 5 0 5 0 22
T17 Turns 180deg in place counterclockwise 8.55 5 5 3 5 0 5 10 33
T18 Maneuvers sideways right 33.55 3 3 3 3 3 3 3 21
T19 Maneuvers sideways left 36.74 2 3 3 3 3 3 4 21
T20 Frontal collision 10.91 5 5 5 5 5 5 5 35
T21 Lateral collision right 13.03 5 5 5 5 5 5 5 35
T22 Lateral collision left 10.60 5 5 5 5 5 5 5 35
T23 Collision on moving object 8.59 5 5 5 5 8 5 5 38
T24 Avoids moving object - left 13.68 5 5 5 5 0 5 5 30
T25 Avoids moving object - right 13.36 5 4 5 5 3 5 5 32

T26 Rolls 2m across 5deg side-slop
(right-side down) 10.20 0 5 5 0 0 0 0 10

T27 Rolls 2m across 5deg side-slop
(left-side down) 10.70 0 5 5 0 0 0 0 10

T28 Rolls 100m to local gym 66.75 1 0 1 2 0 0 0 4
T29 Gets through swing door 14.68 0 5 6 0 0 0 0 11
Total 103 108 125 113 83 106 105 743
a P1 to P7 indicate the participants, numbered from 1 to 7.
b The numbers under columns P1 to P7 represent the number of task trials of that participant.
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Chapter 5
EXPERIMENTS AND RESULTS

This chapter presents the experimental results using the methodologies outlined

in previous sections. We present the classification results on the right hand side of

the pipeline 4–1, followed by the pattern discovery results on the left hand side of

the pipeline. We end the chapter with some discussions about the results.

5.1 Event Classification

5.1.1 Results

We compare classification accuracy for both the Individual-Set and Group-Set

setting in Table 5–1. Note that in addition to the method advocated above, we

also present results for the case where we use the reduced FFT output directly as a

feature, rather than the output of the clustering step. The overall classification ac-

curacies are slightly less than 50%, with similar accuracy for both feature types in the

Individual-Set task, but better accuracy using the cluster output in the Group-Set

task. There are two important aspects to observe here. First, cluster composition

seems to be more robust to variances, as is the characteristic of the ‘Group-Set’ data.

Second, classification on cluster composition is much cheaper in term of computa-

tional cost, and thus useful in real-time operation. Overall, given that classification

was performed using only 600 training samples on more than 25 different classes, in

which some of them, like ‘T28 - Rolls 100m to local gym’ are highly complicated,
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we would argue that the results show significant ability to disentangle complex data

from natural sensor data.

Looking at Table 5–2, we can directly observe the confusion matrix, showing

which activities are being mis-classified, and as what other activity. We observe that

many tasks, like ‘T20, 21 and 22 - frontal and left/ right lateral collisions’, are very

similar in nature and the confusion matrix shows that they are mostly confused with

one another. Although the overall accuracy is slight below 50%, we can see that

most big numbers fall into the diagonal instead of scattering around. Indeed, the

accuracy would improve significantly if we were to group similar items together; this

is one of the motivations for investigating unsupervised pattern discovery methods.

Table 5–1: Classification Accuracies

Experimental Sets per-window FFT per-task Cluster Composition
Individual-Set 49.37% 48.28%
Group-Set 35.92% 46.60%

5.2 Pattern Discovery via Topic Modeling

It is notoriously difficult to evaluate the performance of pattern discovery meth-

ods, thus we use a mix of results, including qualitative inspections of topic compos-

itions, and some more quantitative measures in our evaluation.

5.2.1 Topic Composition of Documents

As mentioned above, one output of LDA is the probability distribution of topics

for each document. We define the topic composition of document i as

TCi =< θi,1, θi,2, ..., θi,T >

which is essentially the same as the probability distribution of topics of document i.

Intuitively, we consider the composition as an expected realization of the probability
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Table 5–2: Confusion Matrix on Group-Set
Predicted Tasks

Task T1 T2 T3 T4 T5 T6 T7 T8 T9 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T28
T1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T2 0 0.4 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0
T3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T4 0 0 0.2 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T5 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0.4
T6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T9 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0

T11 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T12 0 0 0 0 0 0 0 0 0 0 0.6 0.2 0 0 0 0.2 0 0 0 0 0 0 0 0 0
T13 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0.8 0 0 0 0 0 0 0 0 0 0 0
T14 0 0 0 0 0 0 0 0 0 0 0.2 0 0.6 0 0 0 0 0 0 0.2 0 0 0 0 0
T15 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0.6 0 0 0 0.2 0 0 0 0 0 0 0
T16 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.25 0.25 0 0 0 0.25 0 0 0 0 0
T17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0.2 0 0 0 0 0 0 0 0 0
T18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
T19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0
T20 0 0 0 0 0 0 0 0 0.2 0 0.2 0 0 0 0 0 0 0 0.2 0.2 0 0.2 0 0 0
T21 0 0 0 0 0 0 0 0 0 0 0.2 0 0.4 0 0 0 0 0 0 0.2 0.2 0 0 0 0
T22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0.6 0.2 0 0 0
T23 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0.2 0.4 0 0
T24 0 0 0 0 0 0 0 0 0 0 0.2 0 0.2 0 0 0 0 0 0 0 0 0.4 0.2 0 0
T25 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0.4 0.4 0 0
T28 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

distribution. For a given document i of length L, the expected number of words

generated from topic t, is simply θi,t · L. Normalizing it with the total number of

words coming from all topics, i.e.
T∑
t=1

θi,t · L = L, gives exactly θi,t.

For demonstration purposes, we show the results for the first participant (similar

results are observed for other participants), and three regions are selected to illustrate

some observations, as shown in Figures 5–1 to 5–3 (The full graph can be found in

Appendix). Each column represents one document, which is composed of multiple

vertical bars, which sum to 1. Each of the 15 bars represents the composition of

a particular topic. For comparison, we also computed the cluster composition (40

clusters) of each document, and plotted them in Figures 5–4 to 5–6. The three

selected regions are i) ‘T1: Rolls forward 10m’, ii) ‘T8-T9: Gets through hinged door’

and iii) ‘T28: Rolls 100m to local gym’. Tasks in each region possess a certain kind of

characteristic: Region i) contains the most clearly defined activities whereas Region

ii) contains the most chaotic ones. If you refer to Table 5–2, they correspond to the
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parts where classification accuracies are 100% and 0% respectively. Region iii), on the

other hand, is a good example to demonstrate complex activities. Complex activity is

defined as an activity that is composed of numerous inter-related subroutines. As we

can imagine, ‘Rolls 100m to local gym’ potentially involves numerous sub-activities,

in which ‘Rolls forward’ features prominently.

We begin with a few qualitative observations. First, it is readily seen that

cluster composition is much more noisy than topic composition, especially for Region

ii). Most documents contain more than 4 or 5 major clusters, whereas in the topic

composition, documents are mostly dominated by 1 to 2 major topics. Taking a

closer look at Region iii) of topic composition, we are able to tell a brief story

of what happened during the ‘Rolls 100m to local gym’ period. The dominant

topics in the first 5 documents correspond to the dominant topics in the region

of ‘T24, T25: Avoids moving objects’ (which are not shown in the figure). We

then have 2 to 3 not-so-obvious documents, followed by two documents showing

backward-moving patterns, which correspond to the dominant topic in the region of

‘T2: Rolls Backward 5m’ (which is also not shown in the figure). After another 3

to 4 not-so-obvious documents, the activity ends with 2 forward-moving patterns,

which correspond to the dominant topic in the region of ‘T1: Rolls forward 10m’

(same dominated color as the first region).

5.2.2 Task Composition of Topics

Another interesting aspect to consider is what constitutes a topic, in terms of

the underlying labels. Ideally, if we have perfectly labelled windows, we could find

the composition of primitive actions for each topic. That might not be practical

54



Figure 5–1: Topic compositions of documents - Moving Forward

Figure 5–2: Topic compositions of documents - Crossing Gates
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Figure 5–3: Topic compositions of documents - Go to Gym

Figure 5–4: Cluster compositions of documents - Moving Forward

though, since giving labels in a per-window basis involves a tremendous amount of

work. As a secondary measure, we use per-task labels (which is also the labelled
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Figure 5–5: Cluster compositions of documents - Crossing Gates

task code in our dataset) to approximate per-window labels. This means that for all

windows coming from a particular task, we simply label them with the task code,

and use this to calculate the task composition for each topic. The results are shown

in Table 5–3 (we only include tasks that account for at least 10% of total.)

5.2.3 Quantitative Measures

In a broader sense, both topics and clusters define a grouping of datapoints, with

the goal of putting similar items in the same group and putting different items in

different groups. Purity, precision and recall offer quantitative measures to evaluate

this kind of grouping quality. They were originally used to analyze clusters, but can

be extended easily to analyze topics. In this subsection, we compare these metrics
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Figure 5–6: Cluster compositions of documents - Go to Gym

between cluster composition and topic composition. More detailed explanation on

these metrics can be found in the Information Retrieval literature (see Chapter 16.3

of [33]); We give a short description here. Continuing with our previous notations,

purity, precision and recall of cluster composition are defined as:

PurityC =
1∑

i
Ni

∑
k

max
i

(CCki ·Ni) (5.1)

PrecisionC =
TPC

TPC + FPC
(5.2)

RecallC =
TPC

TPC + FNC
(5.3)
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Table 5–3: Task Compositions of Topics

Topics Dominant Tasks
1 T4 (14%) T5 (13%) T3 (12%) T1 (10%) T21 (10%)
2 T8 (19%) T24 (10%) T18 (10%)
3 T18 (26%) T19 (24%)
4 T5 (23%) T4 (21%) T22 (14%) T6 (11%) T23 (10%)
5 T3 (44%) T4 (31%) T11 (13%)
6 T15 (30%) T12 (16%) T13 (10%)
7 T18 (17%) T19 (12%)
8 T12 (13%) T7 (11%) T21 (10%)
9 T24 (14%) T25 (13%) T18 (12%)
10 T4 (30%) T3 (18%) T22 (10%)
11 T25 (31%) T24 (22%) T28 (17%)
12 T1 (71%) T28 (14%)
13 T2 (51%) T13 (20%)
14 T24 (16%) T20 (14%) T3 (13%) T21 (13%) T8 (10%)
15 T8 (11%) T13 (10%)

TPC =
∑
k

∑
i

(
CCki ·Ni

2

)
=
∑
k

∑
i

(CCki ·Ni) · (CCki ·Ni − 1)

2

FPC =
∑
k

∑
i1

∑
i2>i1

(CCki1 ·Ni1) · (CCki2 ·Ni2)

FNC =
∑
k1

∑
k2>k1

∑
i

(CCk1i ·Ni) · (CCk2i ·Ni)
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Purity, precision and recall for topic composition are defined similarly by repla-

cing CCk
i with TCt

i ,
∑
k

with
∑
t

and setting Ni = L. For example:

PurityT =
1∑
i

L

∑
t

max
i

(TCt
i · L) (5.4)

=
1

M

∑
t

max
i

(TCt
i ) (5.5)

Intuitively, purity measures the dominance of the most frequent class within

the groups, whereas precision and recall measure the correctness of grouping similar

items. TP , FP , FN stand for True Positive (number of pairs of windows with the

same task labels put in the same group), False Positive (number of pairs of windows

with different task labels put in the same group) and False Negative (number of pairs

of windows with same task labels put in different groups) respectively.

Table 5–4 shows that topic composition performs much better than cluster com-

position in terms of these metrics. Column 1 and 3 show the results with the best

cross-validation selected parameters (40 clusters and 15 topics respectively). For the

purpose of comparing same number of groupings between clusters and topics, we also

include results for cluster composition using 15 clusters in Column 2.

Table 5–4: Purity, Precision and Recall on Individual-Set

Cluster
Composition
(40 clusters)

Cluster
Composition
(15 clusters)

Topic
Composition
(15 topics)

Purity 35.74% 25.64% 52.25%
Precision 24.01% 13.33% 36.45%
Recall 18.48% 34.40% 65.99%
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5.2.4 Hazard Discovery

Finally, we conclude this section by introducing a potential use of inferred topics.

We consider a particular topic, and plot its composition across documents, thus we

can observe the activation of that topic across time (documents are aligned with

time). We selected two topics, 11 and 14, to show the idea. The result is shown

in Figure 5–7. Referring to Table 5–3, topics 11 and 14 constitute mostly ‘Avoid

objects’ and ‘Collisions’. Suppose, from prior knowledge, we know that these types

of tasks are dangerous. By analyzing their activations across time, we could identify

some hazardous zones during the use of the smart wheelchair. By correlating this

with the smart wheelchair’s localization in the environment, it may be possible to

identify problematic areas, in addition to difficult activities.

Figure 5–7: Topic activations for two selected topics

61



5.3 Summary

To summarize the experiments, we have achieved around 50% accuracy in activ-

ity classification. We would argue that the classifier is doing reasonably well consid-

ering that it is a 25-class classification problem, where a random classifier would give

an accuracy of just 4%. Moreover, the misclassified activities are usually not dis-

tributed randomly, but mixed up only with similar items, as shown in the confusion

matrix.

On the other hand, we demonstrated the usefulness of pattern discovery with

topic modeling in terms of story telling and hazard discovery examples. We also

quantitatively show that topic composition is a better grouping than cluster com-

position in terms of purity, precision and recall. Given that unsupervised learning is

hard to evaluate, our mixed qualitative and quantitative approach show that topic

modeling could be a powerful tool to understand the latent activity patterns.
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Chapter 6
CONCLUSION

This thesis presents a machine learning approach to characterize and discover

activities during the use of intelligent powered wheelchairs. As per our knowledge,

this is one of the first studies applying activity recognition and topic modeling meth-

ods to wheelchair data. We have summarized the main contributions and possibilities

for future work below.

6.1 Contributions

First, we proposed a new classification method using cluster composition as a

feature vector. We compared the results of using cluster composition to ordinary

FFT feature and found that cluster composition is more robust to noise. It is also

shown to be more straight forward and efficient than per-window FFT features as a

way to classify activities.

Second, we explored the possibility of applying topic modeling, more specifically

the LDA model, to characterize wheelchair activities. We demonstrated the potential

of pattern discovery with a mix of qualitative and quantitative results. As such, it

provides a new tool for analysing wheelchair activities in an unsupervised manner.

Third, we constructed an end-to-end pipeline from capturing sensor data to

activity recognition. The neat thing about the pipeline is that the supervised classi-

fication side and unsupervised topic modeling side share a lot of common components,

which eases the implementation work.
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Altogether, our work contributes to the development of a full-fledged monitoring

system on smart wheelchairs, as well as other assistive and rehabilitation robots

because the presented pipeline can be transferred easily to other robotic system.

6.2 Future work

First, we would like to apply the proposed methods on other datasets, especially

for the topic modeling part. The dataset we used is task oriented, meaning that well

defined tasks are executed for numerous trials. However, to demonstrate the effect of

topic modeling, it would be more interesting to see the results on a more continuous,

natural and long-term driving sequences. Ideally, the dataset should be labelled with

high level patterns as well as low level primitive actions so we can better evaluate the

results. A real time video recordings of the ride, so we can show the topic activations

alongside a visual, would also be useful to validate the results.

Second, we would like to see more usages of topic modeling other than story

telling (Section 5.2.1) and hazard discovery (Section 5.2.4). Our current work is still

at the exploratory level, and there are still plenty of room for us to discover what

else to do with the latent topics. Nevertheless, having an unsupervised method is

very powerful and useful because of the scarcity of labels in real life.

Third, we would like to push the activity recognition pipeline online so we can

operate in real time. Right now, we analyse the activities in batch. We foresee that

this should not be too difficult given our current pipeline. On the pattern discovery

side of the pipeline, we can use online LDA [50] instead of ordinary LDA. On the

classification side, nearest neighbour classification can be done easily in real time

using a data structure like kd-trees [51].
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Appendix A
Topic/Cluster Composition Graphs

Here, we presents the full topic composition graphs and cluster composition

graphs across a total of 302 documents mentioned in the Task Composition section

in Methodology chapter.

Figure A–1: Topic composition - Full Graph (Part 1)
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Figure A–2: Topic composition - Full Graph (Part 2)

Figure A–3: Topic composition - Full Graph (Part 3)
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Figure A–4: Topic composition - Full Graph (Part 4)

Figure A–5: Topic composition - Full Graph (Part 5)
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Figure A–6: Topic composition - Full Graph (Part 6)

Figure A–7: Cluster composition - Full Graph (Part 1)
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Figure A–8: Cluster composition - Full Graph (Part 2)

Figure A–9: Cluster composition - Full Graph (Part 3)
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Figure A–10: Cluster composition - Full Graph (Part 4)

Figure A–11: Cluster composition - Full Graph (Part 5)
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Figure A–12: Cluster composition - Full Graph (Part 6)

71



References

[1] L. Fehr, W. E. Langbein, and S.B. Skaar. "Adequacy of power wheelchair control
i terfaces for persons with severe disabilities: A clinical survey." Development
37.3 (2000): 353-360.

[2] P. Turaga, et al. "Machine recognition of human activities: A survey." Circuits
and Systems for Video Technology, IEEE Transactions on 18.11 (2008): 1473-
1488.

[3] R. C. Simpson, and S. P. Levine. "Voice control of a powered wheelchair."
Neural Systems and Rehabilitation Engineering, IEEE Transactions on 10.2
(2002): 122-125.

[4] S. P. Levine, et al. "The NavChair assistive wheelchair navigation system."
Rehabilitation Engineering, IEEE Transactions on 7.4 (1999): 443-451.

[5] H. A. Yanco "Wheelesley: A robotic wheelchair system: Indoor navigation and
user interface." Assistive technology and artificial intelligence. Springer Berlin
Heidelberg (1998): 256-268.

[6] Y. Kuno, N. Shimada, and Y. Shirai. "Look where you’re going [robotic wheel-
chair]." Robotics & Automation Magazine, IEEE 10.1 (2003): 26-34.

[7] C. Castellini, and R. Koiva. "Intention Gathering from Muscle Residual Activ-
ity for the Severely Disabled." IROS 2012, Workshop on Progress, Challenges
and Future Perspectives in Navigation and Manipulation Assistance for Robotic
Wheelchairs (2012).

[8] J.A. Meyer, and D. Filliat. "Map-based navigation in mobile robots:: II. a review
of map-learning and path-planning strategies." Cognitive Systems Research 4.4
(2003): 283-317.

[9] A.K. Moghaddam "Automatic Detection and Classication of Events on Power
Wheelchairs Using Embedded Sensors" Master Thesis, McGill University. (2013)

72



73

[10] I. Pettersson, G. Ahlström, and K. Törnquist. "The value of an outdoor powered
wheelchair with regard to the quality of life of persons with stroke: A follow-up
study." Assistive technology 19.3 (2007): 143-153.

[11] R. C. Simpson, E. F. LoPresti, and R. A. Cooper. "How many people would
benefit from a smart wheelchair?." Journal of rehabilitation research and devel-
opment 45.1 (2008): 53-72.

[12] P. Boucher, A. Atrash, S. Kelouwani, W. Honoré, H. Nguyen, J. Villemure, F.
Routhier, P. Cohen, L. Demers, R. Forget and J. Pineau. "Design and validation
of an intelligent wheelchair towards a clinically-functional outcome." Journal of
neuroengineering and rehabilitation 10.1 (2013): 58.

[13] IROS 2012 Workshop on Progress, Challenges and Future Perspect-
ives in Navigation and Manipulation Assistance for Robotic Wheelchairs.
http://www.radhar.eu/events/IROS2012-robotic-wheelchairs.

[14] C. Gao, T. Miller, J.R. Spletzer, I. Hoffman, T. Panzarella. "Autonomous dock-
ing of a smart wheelchair for the automated transport and retrieval system
(ATRS)". J Field Robot (2008): 203-222.

[15] O. Horn O, M. Kreutner. "Smart wheelchair perception using odometry, ultra-
sound sensors, and camera". Robotica 27.2 (2009): 303-310.

[16] R. C. Simpson "Smart wheelchairs: A literature review." Journal of rehabilita-
tion research & development 42.4 (2005): 423-438.

[17] L. Montesano, et al. "Towards an intelligent wheelchair system for users with
cerebral palsy." Neural Systems and Rehabilitation Engineering, IEEE Trans-
actions on 18.2 (2010): 193-202.

[18] S. Gulati, B. Kuipers. "High performance control for graceful motion of an
intelligent wheelchair." Robotics and Automation, 2008. ICRA 2008. IEEE In-
ternational Conference on. IEEE, (2008).

[19] R.L. Kirby, S.A. Ackroyd-Stolarz, M.G. Brown, S.A. Kirkland, D.A. MacLeod.
"Wheelchair-related accidents caused by tips and falls among noninstitutional-
ized users of manually propelled wheelchairs in Nova Scotia." American Journal
of Physical Medicine & Rehabilitation 73.5 (1994): 319-330.

[20] N. Cristianini, J. Shawe-Taylor. "An introduction to support vector machines
and other kernel-based learning methods" Cambridge university press (2000).



74

[21] D.M. Blei, A.Y. Ng, and M.I. Jordan. "Latent dirichlet allocation." the Journal
of machine Learning research Vol.3 (2003): 993-1022

[22] I. Porteous, et al. "Fast collapsed gibbs sampling for latent dirichlet allocation."
Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM (2008).

[23] F. J. Harris "On the use of windows for harmonic analysis with the discrete
Fourier transform." Proceedings of the IEEE 66.1 (1978): 51-83.

[24] J. W. Cooley, P. AW Lewis, and P. D. Welch. "The fast Fourier transform and
its applications." Education, IEEE Transactions on 12.1 (1969): 27-34.

[25] P. Boissy, S. Brière, M. Hamel, M. Jog, M. Speechley, A. Karelis, J. Frank,
C. Vincent, R. Edwards, C. Duval and the EMAP group. "Wireless inertial
measurement unit with GPS (WIMU-GPS)—Wearable monitoring platform for
ecological assessment of lifespace and mobility in aging and disease." Annual
International Conference of the IEEE. (2011).

[26] J. Pineau, A.K. Moghaddam, H.K. Yuen, P. Archambault, F. Routhier, F.
Michaud, P. Boissy. "Automatic Detection and Classification of Unsafe Events
during Power Wheelchair Use." Unpublished.

[27] N. Ravi, N. Dandekar, P. Mysore, M.L. Littman. "Activity recognition from
accelerometer data." AAAI Conference on Artificial Intelligence. Vol.5. (2005).

[28] L. Bao, S.S. Intille. "Activity recognition from user-annotated acceleration
data." Pervasive Computing. Springer Berlin Heidelberg (2004): 1-17.

[29] T. Huynh, M. Fritz, and B. Schiele. "Discovery of activity patterns using topic
models." Proceedings of the 10th international conference on Ubiquitous com-
puting. ACM (2008).

[30] S. Ray, and R.H. Turi. "Determination of number of clusters in k-means clus-
tering and application in colour image segmentation." Proceedings of the 4th
international conference on advances in pattern recognition and digital tech-
niques. (1999).

[31] J. Frank, et al. "Time series analysis using geometric template matching." Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on 35.3 (2013): 740-
754.



75

[32] Dalhousie University. Wheelchair Skills Test, version 4.1. Available at:
http://www.wheelchairskillsprogram.ca/eng/4.1/WST_Manual_Version4.1.51.pdf.
Accessed March 5 (2010).

[33] C.D. Manning, P. Raghavan, and H. Schütze. Introduction to information re-
trieval. Vol.1. Cambridge: Cambridge University Press (2008): 356-359.

[34] I. H. Witten, and E. Frank. "Data Mining: Practical machine learning tools and
techniques" Morgan Kaufmann (2005).

[35] C. M. Bishop "Pattern recognition and machine learning". Vol.1. New York:
springer (2006).

[36] F. Sebastiani. "Machine learning in automated text categorization." ACM com-
puting surveys (CSUR) 34.1 (2002): 1-47.

[37] M. H. Kutner "Applied linear statistical models". Vol.4. Chicago: Irwin, (1996).

[38] A. L. Blum, and P. Langley. "Selection of relevant features and examples in
machine learning." Artificial intelligence 97.1 (1997): 245-271.

[39] T. Cover, and P. Hart. "Nearest neighbor pattern classification." Information
Theory, IEEE Transactions on 13.1 (1967): 21-27.

[40] P. E. Danielsson "Euclidean distance mapping." Computer Graphics and image
processing 14.3 (1980): 227-248.

[41] P. E. Black "Manhattan distance." Dictionary of Algorithms and Data Struc-
tures 18 (2006): 2012.

[42] T. Kanungo, et al. "An efficient k-means clustering algorithm: Analysis and im-
plementation." Pattern Analysis and Machine Intelligence, IEEE Transactions
on 24.7 (2002): 881-892.

[43] D. Aloise, et al. "NP-hardness of Euclidean sum-of-squares clustering." Machine
Learning 75.2 (2009): 245-248.

[44] K. Alsabti, S. Ranka, and V. Singh. "An efficient k-means clustering algorithm."
Electrical Engineering and Computer Science (1997): paper 43.

[45] H. Abdi, and L. J. Williams. "Principal component analysis." Wiley Interdis-
ciplinary Reviews: Computational Statistics 2.4 (2010): 433-459.



76

[46] J. Shlens "A tutorial on principal component analysis." Systems Neurobiology
Laboratory, University of California at San Diego 82 (2005).

[47] M. Steyvers, and T. Griffiths. "Probabilistic topic models." Handbook of latent
semantic analysis 427.7 (2007): 424-440.

[48] C. Schaffer "Selecting a classification method by cross-validation." Machine
Learning 13.1 (1993): 135-143.

[49] P. Bloomfield "Fourier analysis of time series: an introduction" John Wiley &
Sons (2004).

[50] M. D. Hoffman, D. M. Blei, and F. R. Bach. "Online Learning for Latent Di-
richlet Allocation." NIPS. Vol. 2. No.3. (2010).

[51] A. W. Moore "An introductory tutorial on kd-trees" (Technical report 209).
Computer Laboratory, University of Cambridge. Extract from AWMoore’s Phd.
Diss. thesis: Efficient Memory-based Learning for robot Control, 1991.

[52] J. Connell, and P. Viola. "Cooperative control of a semi-autonomous mobile ro-
bot." Proceedings of the IEEE International Conference on Robotics and Auto-
mation. Vol.2. (1990).

[53] S. P. Parikh, et al. "Human robot interaction and usability studies for a smart
wheelchair." Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings.
2003 IEEE/RSJ International Conference on. Vol. 4. IEEE, (2003).

[54] N. I. Katevas, et al. "The autonomous mobile robot SENARIO: a sensor aided
intelligent navigation system for powered wheelchairs." Robotics & Automation
Magazine, IEEE 4.4 (1997): 60-70.

[55] T. L. Lee, et al. "The omni-directional wheelchair for the elderly." Gerontech-
nology 7.2 (2008): 148.

[56] P. D. Nisbet "Who’s intelligent? Wheelchair, driver or both?." Control Applic-
ations, 2002. Proceedings of the 2002 International Conference on. Vol. 2. IEEE,
(2002).

[57] T. Carlson, and Y. Demiris. "Human-wheelchair collaboration through predic-
tion of intention and adaptive assistance." Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on. IEEE, (2008).



77

[58] P. Encarnação "Understanding and Improving Power Mobility Use among Older
Adults: An Overview of the Canwheel Program of Research." Assistive Techno-
logy: From Research to Practice: AAATE 2013 33 (2013): 210.

[59] J. Pineau, and A. Atrash. "SmartWheeler: A Robotic Wheelchair Test-Bed for
Investigating New Models of Human-Robot Interaction." AAAI Spring Sym-
posium: Multidisciplinary Collaboration for Socially Assistive Robotics. (2007).

[60] V. Madisetti "Digital signal processing fundamentals" CRC press, (2010).


